The National Oceanic and Atmospheric Administration (NOAA) ship Okeanos Explorer departed from Port Canaveral in Florida on a two-week expedition led by NOAA Ocean Exploration, featuring the technology demonstration of an autonomous underwater vehicle. This new class of submersible robot called Orpheus will showcase a system that will help it find its way and identify interesting scientific features on the seafloor.
Terrain-relative navigation was instrumental in helping NASA’s Mars 2020 Perseverance Mars rover make its precision touch down on the Red Planet on Feb. 18. The system allowed the descending robot to visually map the Martian landscape, identify hazards, and then choose a safe place to land without human assistance. In a similar way, the agency’s Ingenuity Mars Helicopter uses a vision-based navigation system to track surface features on the ground during the flight in order to estimate its movements across the Martian surface.
Developed by engineers at NASA’s Jet Propulsion Laboratory in Southern California, an evolution of the vision-based navigation that has been used on Mars will now undergo a trial run a little closer to home: off the U.S. East Coast in the Atlantic Ocean.
Large, high-power location-finding equipment like sonar would normally be required to navigate the dark and often murky waters near the seabed. By utilizing a low-power system of cameras and lights, along with advanced software, Orpheus is an order of magnitude lighter than most deep-sea submersibles. Smaller than a quad bike and weighing about 550 pounds (250 kilograms), Orpheus is designed to be nimble, easy to operate, and rugged while exploring depths inaccessible to most vehicles.
Designed by Woods Hole Oceanographic Institution (WHOI) in collaboration with JPL, Orpheus can work untethered almost anywhere in the ocean, including the most extreme depths. Ultimately, the project team hopes to see a swarm of these underwater robots work as a team to build 3D maps of the vast regions of the unexplored ocean floor in the hadal zone—regions deeper than 20,000 feet (6,000 meters). But before the robot can explore these depths, it must first be put through its paces in shallower waters.